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AIR BLAST MEASUREMENTS FROM THE DETONATION OF
AN EXPLOSIVE GAS CONTAINED IN A HEMISPHERICAL
BALLOON (CPERATION DISTANT PLAIN, EVENT 2a)

ABSTRACT
Air blast was measured from the detonation of a mixture of oxygen

and propane squivalent to 20 tons of INT in a hemisphsrical balloon
anchored to the ground surface. Measured values of shock arrival time,
overpressure, duration of positive and negative phase, overpressure
impulse, dynamlc pressure, and dynamic pressure impulse are plotted as
functions of ground range. Pressure~distancs comparisons with INT show
the overpressure to be less than TNT at pressures greater than 3C psi.
Comparisons made of overpressure waveshaps and impulse as a function of
shock overpressure show an equivalent yield of 20 tone or larger and a
dynamic pressure impulse about 60 parcent larger than for a correspon-
ding 20 Ton TNT charge.
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1, INTRODUCTION

A series of shock and blast experiments known as Operation Distant
Plain were sponsored by The Technical Jooperation Program (TTCP) during
the calendar years 1966 and 1967. The operation was conducted at the
Defence Research Establishment, Suffield (DRES), Ralston, Alberta, Canada,
and at a site near Hinton, Alberta, Canada, Material presented in this
report describes the measurements made on Event 2A, which was fired on 22
July 1966 at the DRES,

The charge for the experiment identified as Event 2A,consisted of a
125 foot diameter hemispherical balloon filled with an oxygen-propane mix-
ture having a mole mixture of 02/C3H8 = 3,50, Mylar was the basic material
used in the construction of the balloon, A hqrisontally oriented biallonet
was incorporated in the constructic.: to permit rapid inflaticn with air to
sustain the balloon against wind conditions during the long filling time,
Relief valves were attached cn the envelope in crder not to exceed the
desired internal pressure., Sections of 2% inch diaweter pipe were placed
in Nylon sieeves bonded around the equator of the balloon, The pipes were
fitted together and tied into 42 anchor positions for securing the balloon
to the ground, Reference 1 describes in greater detail the Project 1,10
balloon efforts,

The trial was conducted at the Drowning Ford Range of DRES where the
composition of tue soil is a silty clay alluvium,

1.1 Objectives
The objectives of the Ballistic Ressarch Laboratories (BRL) in Event

2A wers to measure the airblast p rameters on the earth's surface and at

13

Preceding page blank




i sl

3

Sag ey A7 S 2oy

—

AR

MR

poagkdianiticn

Sz o1

selected helghts above the surface. Comparisons with data obtained on
related past experiments were to be performed.
1.2 Background
An economical substitute for TNT as a blast source has bean under
investigation for seversl years. Baslic research work with detonsble
gas balloons led to the establishment of a detonable gas esplosion
development progirame The Operation Distant Plain Event 2A was a logical
continuaticn of :xperimental work conducted under this program in 1965
with 17 and 32 foot diameter balloons with yields up to 5 tons. Advantages
of a detonable gas balloon wers considered to be: (1) The cost of the
detonable gas mixture is low, less than L cents per pound for oxygen,
propane and methane in large quantities. (2) The technique provides
safe working conditions for the experimenters, i.e., the test site can
be prepared, gages installed and calibrated without the werk being done
in the praseuce of a large charge of ™NT, The gas mixture can be injected
into the bailoon the day of the test. (3) The detonable gas mixture adapts
itself to air blast phenomenra.studies more readily than the TNT. A buoyant
gas mixture can be used and the balloon positioned at the desired height
of bursts No heavy support mechanism is required like that for TNT.
(L) A well defined blast wave is generated with 1ittle or no perturba-
tions. (5) Little, if any ejecta is produced. A disadvantage is the lack
of duplication of the very high pressure phenomena assoclated with a high
explosive due to the low detonation pressures of the gas (approx. 500 psi).
In a discussion of the blast effects produced by the two types of

explosions, Project 1.10, General American Transportation Corporation

i
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(GATX), states in reference 1, "During the early stages of the Deton-
able Cas Explosion program, it was thecrized that the bdlast effects
produced by & detonable gas explosion and a TNT explesion should ve com-
parable according to the energies released by the respective explosions.
Subsequent experiments with beth msthans-oxygen and propane-oxygen deton-
able gas mixture and additional analyses have shown that this is not the
best parameter for judging the air blest equivalence of a detonable gas
explosion. It has bean found that the peak overpressure versus distance
curve from a dstonable gas axplosion camo?v be made to match the compa-
rable curve from a TNT explosion over a wide range of distance from the
center of the expiosion. If one adjusts the weights of INT and detona-
ble gas so that the peak overpressure dacay curves are matched in the
rarge from approximately 10 to 50 psi, it has been found that the weight
of gas mixture must equal the weight of ths INT charge. In this case,
howsver, the detonable gas explosion releases approximately twice as much
energy as the TNT explosion.®

Predictions of the air blast parameters for INT were prepared by
Mr. John Keefer of BRL in Reference 2 utilizing empirical data. GATX
developed a computer codes to predict the air blast parame.ers from the
detonable gas as described in Reference 1. The predicted values of blast
parameters used for comparisons in this report were derived from the above
refarences.

2. EXPERIMENTAL DESIGN AND INSTRUMENTATION

2,1 Experimental Plan

The experimental program was established so the same blast line

would be used for three successive events, namely Events 1,2 and 24,

15
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Following Event 1, a 20 ton shot on a 81.3 foot steel tower, the blast
lins was refurbished and necessary instruments replaced and calibrated
in preparation for Event 2, Event 2 was to be a2 gas bag shot with an 85
foot height of burst, however, the balloon ruptured during inflation and
the event was postponsd. Consequentl7y, with Event 2 instrumsntation in
a readied condition, the decision was made to proceed with Event 2A as
soon as the balloon could be deployed. Ground zero was displ.aced from
the two previous Event zero positions by precisely 10 feet on a bearing
of 79° 28' 11%, ( see Reference 3). The 30 foot and 55 fout instrument
towers programned for Event 2 were included with the surface instrumen-
tation. The blast line started at 71 feet as seen in the layout presented
in Figure 2.1. Shown in Figure 2.2 is a photograph of the blas} line
and balloon looking down the line from Station 8. A typical surface
station is shown in Figure 2.3. A typical tower station is shown in
Figure 2.4 The total head gage is located on the right, the (drag gage
in the center, and the side-on sensor on the left. The photograph shows
the drag gage with the stainless stesl drag cup used in calibration; a
roughensd cup replaces it for the event.

2.2 Instrumentation

The sensors and mounting systems used for all measurements of over-
pressure, dynamic pressure, and drag will be only briefly mentioned in
the text. A detailed discussion will be found in Reference L.

A1l electronic pressure transducers were the genaral strain-type
which were commercially available. The drag sensor was designed and

developed at BRL around a commercially available bi-axial strain sensing

16
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load cell (see Figure 2,5). Magnetic tape recording equipment,
Consolidated Electrodynamic Corporation (CBC) VR-3300 and VR-3800 machines,
recorded the signal from the transducers in an: unmanned bunker at 1000

fest. Self-recording gages were used, to both suprlement the electronic

R T WL SRS PR I T R s W p NS ¥ A I 220

transducers at certain positions and to extend the blasu line into the
low pressurs rsgion.
2.3 Cslibration

The electrenic instrumentation was calibrated in place by the
application of the particular forcing function, i.e., air pressure to the
overpressure gage and force to the drag gages. Self-recording sensors
wars calibrated in the laboratory prior to their installation in the gage

q
i

case, All pressure calibration equipment was checked for accuracy against
a dead weight secondary standard., Dynamic tests were made with the sensors

in the BRL Shock Tube pricr to the field trial (see Reference L).

3. RESULTS
3.1 Environmental Condiiions §

The envircamental conditions prevailing at the time of detonation
of Bvent 2A are presented in Table 3.1.

The high order detonation of the propans oxygen sdxture is shown in
Figure 3.1. A large amount of thermal energy, reminiscant of nuclsar
shots, was felt at the Technical Observation Point. The blackened tower

il vt

mounts (see Figurs 3.2) present direct evidence of a high thermal output.
Also shown in Figure 3.2, are the remains of the balloon pipa anchoring

3 system and the absence of any crater.
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TAELE 3.1 ENVIRONMENTAL CONDITIONS, EVENT 24

Piring Time
Ambient Pressure

Temperature

o

Wird

Relative Humidity
Sky Cénditions
Surface Conditions

1315 MST, 27 July 1966
13071 pSi

13.8o F at surface
° F at 2 meters

135° - 3.1 mph at 0.6 meters
165° - 4.2 mph at 2 meters
170° - 5.3 mph at 8 meters

46 percent
Clear with bright sunshine

Dry and clean
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3.2, Instrumentation Pesrfurmance

Excellent records ware obtained from the majority of the sensors

used. Oages and recording systems functioned as planned with Lwo excep- .

A8,

tions. Two self-recording overpressure gages failed; one at the 201 foot

range and one at 473 fest. The gags at 201 feet ran prematurely due to Ty

an electrical short in the piston actuator lesads, while the gage at L73
failed to initiate because of a faulty arming switche The record at the
first station, Station 4 at 71 feet, has a slow rise of 0.1 msec to max-
imum pressure followed with & number of rapid variations. Station 5 at
116 feet also has a slow rise of 0.2 msec. In contrast to Evont 1 there
was no initial excitation on the records prior Lo shock arrival.

3.3 Method of Data Reduction

The data recorded by the magnetic tape systems was reproduced and
recorded by an oscillograph with the use of a galvanometer driver. Digital
date from these records were obtainsd by using a Gerber Chart Reader
equipped with digital reuadout heacs which feed signals into a Telecordex
Azornlator System. Self-recording records were read in a similar manner,
however a microscope reader equipped with readout heads replaced the chart
reader. Overall reading error is considered to bes less than one percent.

A1l of the digital data was reduced to pressure and time, and impulae
was computed by the BRL Electronic Scientific Computer (BRLESC), 4 plot
of the data was obtained with an automatic line plotter.

The dynarmdc pressure data was obt.ined from the side-on overpressure

and total head pressure records. The records for each station were read

independently and reduced, then plotted on the same axes with an expanded
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scale to emphasize any peculiarities that were common to each record.
After manually correcting for such things as total head record spikes
crossing the side-on pressure record, the two records were re-read. The
BRLESC was used to process these final records, and compute corrected
dynamic pressure versus time, dynamic pressure impulse versus time, and
Mach number versus time. The method of computation is described in Ref-
erence 5. An example of the resulting plots is shown in Figure A. 12,

The drag records were read and processed in sewral steps. The first
step converted analog data to digital and applied simple moving average
smoothing techniques in the computer reduction process. The records, as
presented in Appendix A (Figures A.19 and A.20), represent the drag records
smoothed over an interval of one millisecond,

For comparison with each cther and with pressure records still further
smoothing was applied. The final step was to fit an exponential decay
curve by eye through the record, remove the variation expressed by that
curve from the data, and make a second plot. On this second plot the
date consisted of oscillations about a horizontal or nearly horizontal
lins, A smoothing was made by eyes on this second plot. This smoothed
curve was combined with the variation previously removed from the data
to obtain a final smoothed gage record. Oscillations with periods up
to & maxjimum of from two to four milliseconds were removed in this
smoothing process. Figure 3.2 shows this smoothing process as applied
to the drag gage record ottained at an elevation of two feet at Station
6. The large oscillations were introduced by mount vibrations.

In the smoothing process the curves were extrapolated to shock arrival
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time, and the maximum values listed in Table 3.l correspond to these
smoothed extrapolated values.

The drag gages were bi-axial. The direction of the sensing axes
listed in Table 3.5 and on the records in Arpendix A were determined
from the gage cslibration data. The gages were installed with the axes
nominally at 0, 90, +45 or -L5 degrees elevation with respect to a level
ground plane. The calibration data were examined to determine what
deviation from the nominel axis direction would produce an equal decrease
in gage output for a constant applied force as the angle of application
of the force was varied in sither direction about the axis. This angular
deviation, usually small, was added or subtracted to the nominal axis
direction to determine the actual direction of the gage senaing axis.

3.4 Presentation of Data

Air Blast dats for Event 2A are listed in Tables 3¢2 through 3.5
Maximum overpressure and positive duration were established by plotting
the data on semi-logarithmic graph pasper in accordance with the procedure
set out in Reference 6.

The arrival tine measured by the surface sensors is presented in
Figure 3.4. The plots of maximum overpressure, maximum negative pressure,
positive phase duration, negative phase duration, positive overpressure
impulse, negatiwe impulse, dynamic pressure, and dynamic pressure impulse
are presented in Figure 3.5 through 3.13. Two plots of the duration dats
were made because of the secondary shock and its occurrance .in the positive
phase in some records and in the time shortly after the positive phase
in others. Figure 3.7 presents the data where the secondary shock is

29
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TABLE 3.4 DYNAMIC PRESSURE RESULTS

Ground
Station Range Blevation
Mo, _ () __(ft)

) 156 2
155 10
156 30

7 201 2
199 22
200 52

8 250 2

Maxinum
Dynamic

Prassure
_(pet)
23,5
2.0
23.0
12,3
13.7

945

L5

Dynamic

Pressure
Impulse
(psi-msec)

258
9k
180
19k
1
82

Lox

* Extrapolated totel head recoid crossover of side-on

record at 20 msec.
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included whereas Figure 3.6 shows the data where the secondary shock is
excluded. In some cases extrapolation was neceasary in order to arrive
at the duration of the primary shock.

Time histories of the waves are presented in Appendix A.

Lo DISCUSSION

L.l Gage Records

A vary clean waveform is seen in the gage records over the ground
rangs instrumentod. Some perturbations, however, are evident at the
closest stations, Stations 4 end 5, 70 and 116 feet from the center of
the balloon. These variations may well be dus to uneven breakup of the
balloon panels.

Slower rise times than usual are evident at these stations. We feel
these are real, that they result from the nearness of the gages to the
balloon where the blast wave has not fully developed into a sharp shock.

A seccndary shock seen developing around 45 msec at Station 5 at 116
feet and contiming beyoad 500 feet influenced the positiwve phase duration
measurements. In some instances the secondary shock occurred v:{thin the
positive phase duration while in other cases it occurred as & positive
shock after the wave had gone negative.

Le2 Comparison of Elevated and Surface or Near-Surface Gage Records

The elevated gages were very nearly at the same slant rangs from
Ground Zero as the gages mounted on or near the ground surface. The
elevated gages were at the sams aimuth angle, but the surface or nsar-

surface gages were located about ?0 feet away from the base of the tower
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supporting the elevated gages.

Figure L1 shows a comparison of overpressure records measured at
station 6, The reflected wave from the tower appears on the -levated
gage records beginning at about 3 milliseconds. Bacause of this reflec-
tion the gage record at 10 feet is significantly highsr and d4ifferent from
the surface and the 30 foot gage record where the tower diameter ?.s small
and the station is located at the top of the tower. ':( y

Figure L.2 shous the total head gags records obtained at Sta
Here ther» is indeed very little differance between the records.
record at 10 feet does not show the peak before reflected shock arrival
88 vocurred on the overpressurs records Since the total head gage does
respond to the overpressure field, this suggests that the owverpressure
record at 10 feet is questionable, and hence any dynamic pressure cal-
culated using 1% would be questionable.

Figurs 1.3 shows the dynamic pressures as determined from _over-
pressure z25d total head gage records for elevations of 2 feet and 30
fost. The value at 30 feet iz lower than at 2 feet, although the rate of
dacey seems about the same. Simce the elevated gages were affected by
tower reflsctions, and the total hesad gage at 30 feet was measuring flow
about 11 degrees off the gage axis, it is difficult to state how much
the difference shown irv Figure L3 is due to these effects and how much,
if zay, is real. .

The drag records obtained at this station are shown in Pigure L.h.
Ths records cbtained at 10 feet and at 30 feot elevations are shown

corrected to an assumed direction of flow corresponding to the angle of
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elavation of the radius from Ground Zero through the gage. Only one
gage axis was active at 30 feet, and at 10 feet the record from one gage
axis (channsl 3, system 3) showed an abnormal rate of decay, thus no
resultant force using data from two gage axes could be computed for either
gage.

Cofraction to the assumed direction of flow involved dividing the
gage data by the cosine of the angle between the gage axis and the assumed
direction of flows. Since these angles were about 45 degrees, the additio-
nal percentage error introduced into the gage records by this process was
about the same as the percentage error in the, angies,

The records from each axis of the gags at 10 feet were treated in-
dependently, and the peak values obtained agree very well. The records
at 10 feet and 30 feet elevations show higher peak values of drag pressure
but a more rapid rate of decay than occurs at the two foot elevation.

Figure 4.5 shows a comparison of overpressure records measured at
Station 7. The reflected wave from the supporting tower struck the
elevated gages at about L milliseconds. The refelected wave was stronger
at 22 feet because of the larger diameter of the tower at that elevation.
The records agres very well at abont 20 milliseconds. Beyond that time,
the gage record at 52 feet seems to decay less rapidly than those measured
at 22 feet and at the surface.

Figure L.6 shows the total head gage records obtained at Station 7.
The reflected wave from the tower arrived at the slevated gages at abaut
17 milliseconds The peak on *he two foot gage record is a reflection from

the tower base. The records at two feet and 22 feet sgree very well
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initially. The angle of elevation of a radius from Cround Zero through
the gage at 22 feet is 6.4 degrees, while for the gage at 52 feet, the
angle is about 15 degrees. The total head gages were mounted parallel
to & level ground plane, so that these angles indicate the inclination
with respect to the flow if the blast wave were symmetric, The 15
degree off-axis flow may account for the lower magnitude of the record
obtained at the 52 foot elevation. There is a slight indication in
Figure L.6 that the rate of decay of the elevated gage racords may be
mors rapid than for the gages record obtained at 2 feet.

Figure 4.7 shows the dynamic pressure calculated using the over-
pressure and total head gage records at each gage station. The surface
overpressure record was used in conjunction with the total head gage
record at two feet for the calculation. The dynamic pressures agree
initially at two feet and at 22 feet, but at 52 feet the record is low
at all times. As at Station 6, it is difficult to determine how much,
if any, of the reduction is real because of the off-axis flow and the
reflection from the gage tower.

The drag records obtained at this station are shown in Figure L.S.
Here both gage axes were active and provided reasonable records at 22
feet and at 52 feet. The records plotted in Figures 4.8 for these eleva-
tions are the resultant drag pressures computed using records from the
two axes of each gaga. The peak magnitudes | are bigher for the gages
on the tower, although not radically so. The initial rate of decay seems
to match for the two elevated gages for about the first three millireconds.
After three milliseconds all the gage rscords differ.

Sh




T i
L —— 2 FT ELEV -
mm—— 22 FT ELEV
~\ .. 82 FT ELEV 7
]
I
5 _
R -
[V
D
(/2]
m ——
W
[r 4
¢ -
o
- 3
2 n
z w——d
>
o —
| -1
- P i
0.1 1 L -~ L
) i0 20 30 40 50
TIME ,MSEC

Figure L.7 Dynamic Pressure versus Time at Different Elevations
at Station 7, 201 Feet

55

E
E




b s i |

w s

DRAG PRESSURE, PSI

100 ) l

0.1

rfrivi

|

— 2FT ELEV
—-— 22.4 FT ELEV
- 82.3 FT ELEV

7
1

111

i

L 131

 f
1

| 1 1 L

TIME , MSEC

Figure 4.8 Drag Pressure versus Time Measured at Different
Elevations at Station 7, 201 Feet

56

e ara s v

LR v

3 Bt e B e s

Vv-‘ oA IR AR L




B

S i A

The elevated gage records at this station were used to calculate
flow direction. The results obtainad are shown in Figure L.9 for the
gage at 22 feet and in Figure 4.10 for the gage at 52 feet. The dashed
horizontal lire ies the flow angle with respect to the horizontal plane,
predicted assuming a Syrmetrical. blast wave. Both gages show a flow
angle which is off in the predicted direction, but the variation in angle
is large. Since the gage records themselves have iarge oscillations, a
slight mismatch in oscillations between records will produce large osci
llatiuns in the computed angle of flow. Thus these gage records de not
seem to provide a reliable indication of the direction of flow versus
time.

Figure L.11 shows drag coefficients calculated using the resultant
drag pressure and the dynamic pressure measured at the gage locations,
except for Station 6, where dynamic pressure for the two foot elevation
was ﬁsed ui‘th the drag gage record at 10 feet. All drag coefficients
ghow a rapid decay frem an initial peak, with the raplid decay ending in
times ranging from 3 to 10 milliseconds. The greatest differences at
each station are for the highest gage, whare the measured dynamic pressure
records were quite low compared to the uther gage locations.

Figure ;.12 shows drag coefficients computed using the dynamic
pressure records obtained a% the two foot elevation. Here the drag
coefficients more nsarly agree. The greatest dsviation occurs for the
gage record at 30 feet at Station 6 and the gage record at 22 feet at
Station 7.

The agreement noted betwsen surface and near-surface overpressure

57




e

ELEVATION ANGLE DEGRESS

40
STATION 7 201 FT.
ELEVATION 22.4 FT.
SYSTEM 2 CHS +86°
30 SYSTEMS CH4 -—42°
20}

wrr o e ————— ELEVATION ANGLE OF
RADIUS FROM G2 TO GAGE
ol
-30 ] . |
0 10 20

TIME ,MSEC

Pigure 4.9 Direction of Flow as Derived from Drag Gage at 22
Poot Blevation, Station 7, 201 Feet

58

PP (RIS




PG ¥

ELEVATION ANGLE, DEGREES

STATION 7 201 FT

ELEVATION 52.3 FT
30[- SYS 3 CH2 o°
SYS 3 CH I3 90°

[._._ — ELEVATION ANGLE OF
RADIUS FROM G2 TO GAGE.

-20}

1 ] | ]
o 10 20 30 40
TIME ,MSEC

Figure 11,10 Direction of Flow as Derived from Diag Gage at
52 Foot Elevation, Station 7, 201 Feet

59




4 T T T T %
v 30 FT ‘§
---10 FT :
— 2 FT §
3| J
- N
: .
W b+
G 7
Q - 5
©
@ 3
(o)
o 1 1 1 { J
0 10 20 30 40 80
TIME ,MSEC
3¢ T T T T
e 82,3 FT.
—-——22.4 FT.
- —_—
E 2FT
E .
L W
: W
W
o
g QO
] o
2 ( ——
&
: o
:
3 - k
’ 40 30 z
] TIME ,MSEC :
Figure .11 Drag Coefficients versus Time at Stations & snd 7 Ueing 2
the Dynamic Pressure Measured at the Gage Locations Z
; Y k-
£ &
i




Wowrm a2,

i e R T T Ty T R S B D P G B RS

o s e e e ot i S

4 T T 1 T
: — 2 FT
‘ : ——— |0 FT USING 2FT
. Pd
L. 3 _.. ; cieees 30T _
= .
ul :
AC:,* .
i :
-:.-.u_ ¢ _.\. .
w LI
Q. 23 . ~
©
- 4
x
(o]
' -
0 - 1 | 1 1
0 10 20 30 40 50
: ' ’ TIME , MSEC ‘
T T T
— 2 FT
-—— 22 FT
g 52 FT
m -l
3}
.
w
[¥1)
o
(&}
(O]
q -
@
(o]
\\ [
~
0o [ 1 1 ]
0 10 20 30 40 50
TIME ,MSEC

Figure 4.12 Drag Coefficients versus Time at Stations ¢ and 7
Using the Dynamic Pressure Records Obtaired

at the'2 Foot Elevation -

61




and totul head gage records at Stations 6 and 7 indicate thes the blast
Wave WS reasonably symmstric. The difference in total head records and

dynamic pressure rocords which were noted were probably csused by off-

axis flow affecta and tower reflections. The drag gage records differed

significantly at each location, and di? not provide a reliable indication
of [low dirsction.

le3 Scaling

The scaling laws, developed by Sachs while at BRL (Referenoce 7) were
used to scale blast parameters to a standard explosion of 1 1bs of ™T in
an a.mosphere of 1L.7 ps. and at a temperature of 1500, better knowm as
the sed level standard. The three items that are nsedsd to determims the
scaling factors are ambient pressure, ambient temperaturs, and m}d.

For this shot, the amhient pressure was 13.71 psi, the ambient ‘amperature
23.1;0 C, and the yield was 20 tons.

The scaling factcr formulas and definitions ave:
14.7

S L A

P

[+

P 1/3
s = o]
¢ LT

8, o T, * 2131172
"*' [zaa ~3p

SI.SPxSt

whare:

S is the pressure scaling factor
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S4 is the distaace scaling factor
S is thé time scaling factor

St is the impulse scaling Cactor
179 is the ambient pressure

w is ths yield in pounds

T 1s the temperature in °C

The numerical scaling factors are:

Sp = 1.,0723
Sd = 000286
St = 10,0290
SI lod 000311

These numerical scaling factors were used to calculate the standard
sea level conditions fr~» the msasured values, see Tables L.l and L.2.

L.y Comparison of Data

In order to show how the measured data compares with tue standard,
both measursd data and the standard have been plotted on log log graph
pape~. The msasured deta and the standard are at sea level conditions
.60 an atmospheric pressure of lh.7 psi and a temperature of 15o c.
The standard curve is for a hemispherical detonatioa of TNT, (see Ref-
erence 8).

Figure 4.13 is the arrival time versus ground range curve. As can
bs seen, the gas balloon data shows a lcter arrival time when compared
to the atandard and generally follows a parallel line to the standard.

The low detonation velociiyandlargeness of tha bag(gas vs. TNT)resultsin
63
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Tabla 4.2 Measured Dynamic Pressure Data Scaled to

1 Lbe. Sea Level Coi'itions

Dynamic Dynamic Pressure
Ground Dynamic Pressure Impulse
MNorr  eH Tlesl) (mimeen) (osiwmase)
6 L.lb 25,19 8.02
Lolib 25.73 2.69
.52 2Le67 5415
7 5¢75 13.08 6.03 6.0
5.75 1h.7 4.03
5492 10.19 2.3k
8 7.15 482 1.24 o0l
9 8olily ' 2.58
10 10.93 1.2
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a later arrival time and a delay in the formati~n of a true shock front.

Figure Ll.ilh is the overpressure versus the ground rangs. From the
scalad zround range of 7.1 fest (station 8) outward the balloon data is
in good sgreement with the standard. From this point inward the measured
data is l.ess than the standard, establishing a curve of overpressure
corresponding that of a 10 ton TNT charge. Comparison with the prediction
made by the computer code of GATX as shown in Figure 3.5 indicates the
measured data to be lower than their prediction, although a similarity in
shape of the curve is shown.

The positive duration versus ground range curve is shown in Figure
l1el5. The second shock has been insluded in the duration times extracted
from the records. Because of the presence of the secord shock in these
times, the valuas are 15 to 20 percent higher than the standard. If one
extrapolates the curve ignoring the secondary shock, the measured curve
will fall below the standard by approximately the same percentage.

The measured data compares favorably with the standard over the
mejor area instrumented for the positive impulse as seen in Figure L.16.
Differences occurred at those stations closest to the chargr.

Dynamdc pressurz date are plotted in Figures .17 and 4.18. Dynamic
pressure impulee as obtained from mechanical gages by the Defence Standards
Laboratory, Melbourne,Australia (Reference 9) is plotted with the project
data in Figure 4.18, Except for the extrapolated project data point at
Station 8, the data derived from the two instrumentation s; stems agree
and are larger in msgnitude than the standard TNT curve.

i+ was noted in Figure L.l that the overpressure curve for the
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balloon expiosion produced a pressure-distance curve that initially co-
rresponded to a 10 ton INT hemispherical charge explosion. However, for
simdation purposes the wave shape produced for a given maximum over-
pressure is of greater interest. Figure L.19 shows & plot for Erent 2A
of tun decay constant C in the relation P = Pme’Ct’, where P is the
maxime overpressure. The value of C was obtained by plotting the press-
ure record on semi-logarithmic¢ paper and fitting a straight line hy eye
to the initial portion of the record as described in Reference 6. The
value obtained was then scaled to correspond to 1 lb. at sea level con-
ditions. For comparison, Figure L.19 indicates the C values obtained
in a similar fashion for TNT hemispherical charges by C. Kingery in
Reference 10. The higher the value of C the more rapid the decay of
overpressure with time.

As shown in Figure 4.1 the agreement in the decay constants is very
close in the region below about 15 psi, The data do indicate a somewhat

lower value of C and therefore a slower decay at higher pressures. This

implies that though the pressure distance curve in Figure L.l would co-
rrospond to a lower yleld than 20 tons at overpressures gbove 10 psi, the
wave shape is that for a 20 ton or slightly larger charge.

Figure L.20-scaled overpressure imrulse plotted versus maximum over-
pressure. The solid curve is that for a TNT hemispherical charge of 1 1lb
at sea level, and was derived using date in Reference 8. Here the cver-
pressure impilse agrees very well up to about 20 psi. Above 20 psi the
overpressure impulse is somewhat higher than for the corresponding TNT

charge. This indicates that the balloon data oorresponds to af ieast a 20

73




DECAY CONSTANT C, MSEC™!

ot

l —
-8
(o) Tm A
| a 0]
olﬁ#
o Ro © HEMISPHERICAL TNT
CHARGE DATA
-Q* A EVENT 2A DATA
A
'O \”
_ }
i o 100

OVERPRESSURE Py ,PSI

Figure L.19 Exponential Decay Constant C versus Shock Front
Overpressure for Event 2A and a 1 pound Hemispherical
TNT Charge at Sea Level

U

1000

i
-
b
¥
e
X
%
3
o

{i:'\‘ﬁ il s

P

s
8y




e s v Sl

—

IMPULSE, PSI MSEC

OVERPRESSURFE

1000

100

par—e

T
[ i
[ ——— VL3 HEMISPHERICAL TNT CHARGE AT SEA LEVEL —f— -+ |-{ { [ I
o) GROUND GABES, EVENT 2A T -____,_,1” -t - {
L A ELEVATED GAGES, EVENT 24 . INIg
pun

i

1

i

o
7
P
//
P~
4& 0 /’ /
ﬂ AT
(0] cx)"&é
o~
)
LO
P .
7

il L 1

0 100 1000
OVERPRESSURE, PS!

Figure 14+20 Overpressure Impulse Versus Maximum Overpressure
for Event 2A and a 1 Pound Hemispherical INT
Charge at Sea Level

75

Cak i}



CFTTTEET

TP T,

ton INT charge, and somewhat more at shock overpressures above 20 psi.
Figure L.21 shows a compariscr of scaled dynamic pressure impulse
for the balloon explosion compared with that predicted for a 1 1b hemi-
spherical TNT charge at sea level versus shock front overpressure. The
figure shows that the dynamic pressure impulse was about 60 psrcent
large: than that for a corresponding INT explosion., Thus, although the
overpressure impulse was not very greatly different, the dynamic pressure
impulse was disproportionately large. Another difference is that the
dynamic pressure impulse data do not approach the curve for TNT at the
lower shock front overpressures as one would expect, However, the data
shown in Figure 4.21 for the lower pressures were obtained with the
Australian mechanical dynamic pressure impulse gage which has an error
band of about t 20 percent, and it is possible such a trend is obscured
by large errors in this case. More accurate dynamic pressure impulse
measurements on additional detonable gas balloon experiments are required
to determine dynamic pressure impulse versus distance from such explosions.
The blast parameters as a function of distance indicate less than 20
tons yleld for the balloon explosion when compared to a INT surface hemi-
spherical charge, however, comparisons on the basis of matching shock
front overpressure indicate that the wave shape and overpressure impulse
were that of a charge ¢t at least 20 tons. The dynamic pressure impulse
was about 60 percent larger for a given shock front overpressure than

for the corresponding TWT charge.

5. CONCLUSIONS AND RECOMMENDATIONS

f.ean pressurs wivaforms with little noise or distortion wesre recorded
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over the major stations instrumented. The slower burning rate and large
size of the charge influenced the arrival times, resulting in later times
compared to those fiom a INT charge., Other blast parameters compared well
with that of TNT, especially below 30 psi. Above 20 psi, the radius for
a given overpressure was less than that of TNT, approaching the pressure
-distance curve corresponding to 10 tons of TNT. The occurrence of the
secondary shock late in time influerce? the positive phase duration.

Measurements made with surfacey near-surface, and elevated pressure
gages indicated thav no major diffarences occurred with elevation, althoygh
dynamic pressures differed, tiwese differences may have been due to off-
axis flow effects from the supporting tower. Drag zage records differed
considerably and did not provide a clear indication of flow conditions
or flow direction at the gage locations.

Comparison of overpressure wave shape and impulse as a function of
shock front overpressure indi.-ted an equivalent yield of 20 tons or
:1ightly larger, and a dynamic pressure impulse(based on limited data)
about 60 percent larger than for a correspomding 20 ton INT charge.

Thus the balloon explosion simulated a 20 ton TNT charge or larger.

The thermal energy radiated was larger than for a corresponding
TNT charge. Cratering common to TNT explosions on the ground surface
did not occur.

Additional detonable gas balloon experiments are required to im-
preve prediction capability parameters, particularly for dynamic pressure
impul se.
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APPENDIX A

Gage Records, Event 2A
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CAPTION NOTATIONS

The captions associated with each pressure record contain
the svent number, the distance, the station number (the first
digit indicating the particular blast line, succeeding digits
indicating the particular station number) and the system and channel
number or self-recrnrding sensor numbere. In the case of the dynanic
pressure the following information indentifies the notations:

Fp =~ Totsl Head Pressuve

PS -~ Side-~0On Overpressure

PDC - Corrected Dynamic Pressure
Mach - Mach Number
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APPENDIX B

Data From The Premature Detcnation Of
Distant Plain Event 2 B
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Distant Plain Event 2B was the name given to the re-scheduled
Distant Plsin Event 2, The plamned shot was a detonable methane-
oxygen gas mixture, 20 ton INT equivalsn®, contained in a 125 ft.
dismeter balloon to be tetherd at a height of burst of 35 feet
(equal to that of Bvent 1). A premature detonation occurred when the
balloon wns 85 percent filied with methans and still on the ground
surface, Investigations conducted aftér the incident pointed to static
electricity as the most likely cause of the detonation.

Peak overpressure data were obtained by mechanical self-recording
gages. The valuss are tabulated in Table B.1 amd plotted in Figure
B.l. Calculations made for yleld determination indicates an average
yield of i8.6 tons at the height of burst of 62.5 ft.
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Station

Noe

10

12
13

TAELE B.1 PEAK OVERPRESSURE DATA, EVENT 2B

Ground
eon
165
210
305
3%
LBo
570

1000
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Gage Pesk
Number 0veg§;:;sure
12a1 34.0
502 2.5
25-5 k.0
10-5 8.9
10-13 Tl
10-17 T3
517 3.
2-16 1.89




